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Abstract-In this paper we discuss the potential  and  problems  of soil moisture sensing using AMSR data that 
will become available in late 2000 or early 2001. The Advanced Microwave Scanning Radiometer (AMSR) 
will  be the first spaceborne radiometer since the Nimbus-7 SMMR to include a frequency at C-band (6.9 
GHz). The ability to penetrate vegetation, and  to sense deeper in the soil, increases with wavelength. The 
AMSR is  thus expected to have a better soil  moisture sensing capability than the DMSP SSh4iI or TRMM 
Microwave Imager (TMI) instruments which have lowest frequencies of 19.35 and 10.7 GHz, respectively. 
The spatial resolution of the AMSR  at 6.9 GHz is approximately 60 km,  a factor of two better than the SMMR. 
While  not optimal for soil moisture sensing, the AMSR  should provide useful information over low-vegetated 
areas, and will serve as a valuable precursor  to future proposed L-band soil moisture sensors. Vegetation and 
snow cover, frozen ground, topography, open water, and footprint heterogeneity are factors that must be 
considered in  estimating  soil  moisture.  Thus, ancillary data that  can provide information on surface 
characteristics will be useful  in improving the retrievals. Descriptions and preliminary tests of different soil 
moisture retrieval approaches are discussed here. Experiments using surface measurements, airborne 
sensors, and satellite data are planned for continued development of the retrieval algorithms,  and for 
validation of the derived soil moisture products after launch. 

1. INTRODUCTION 

The Advanced Microwave Scanning  Radiometer  (AMSR)  will  provide new data of interest 
for land  surface studies, particularly for soil moisture sensing. The AMSR is currently 
planned for launch on the ADEOS-I1  and EOS PM-1 satellites in late 2000. The  AMSR 
will operate with vertical and horizontal polarizations at frequencies of 6.9, 10.7, 18.7, 
23.8, 36.5, and 89 GHz. It will be the first spaceborne  radiometer since the SMMR in  
1987 to include a C-band (-7 GHz) frequency. The T R "  Microwave  Imager (TMI), 
launched in 1998, includes an X-band (10.7 GHz) frequency, but coverage is limited to the 
tropics (between +-35" latitude). Penetration of vegetation and soil is greater at lower 
frequencies, thus the AMSR is expected to have  better soil moisture sensing capability 
than either the SSMA (with a lowest frequency  of 19.35 GHz) or the TMI. The spatial 
resolution of the AMSR  (-60 km) will be about a factor of two better than the SMMR, 
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and is comparable to the grid scales of current climate models. While not optimal for soil 
moisture sensing, the AMSR should  provide useful soil moisture information over low- 
vegetated  areas,  and will serve as a valuable  precursor to future proposed  L-band soil 
moisture sensors. The ADEOS-I1  and EOS PM-1 satellites will have  equator crossing 
times of 10:30 am and 1:30 pm, respectively. By combining data from the AMSR 
instruments on both satellites an evaluation can  be  done of the improvement in soil 
moisture estimation obtainable by sampling at different points in the diurnal  surface 
temperature cycle. 

There are significant challenges to be  overcome  in  developing algorithms for AMSR 
soil moisture sensing. Validation of the derived soil moisture products will also pose 
many problems. Vegetation and  snow cover, frozen ground, topography, open water, and 
sub-footprint heterogeneity need to be  considered in the retrievals. Extrapolation of the 
retrieved surface moisture  to  deeper  soil layers is desired for some  hydrologic applications. 
Registration of the AMSR data to an  earth-fixed  grid will be  advantageous in using 
ancillary data sets, such as soil texture, topography, vegetation index, and climate data, to 
address some of these problems. 

Approaches currently  being  developed for AMSR soil moisture retrieval  are described 
in this paper. Since soil moisture is not currently measured from space, and is considered 
a challenging measurement, a number of  different algorithms are being considered. 
Evaluation of these approaches is expected to extend through the post-launch validation 
phases. Experiments using in-situ surface measurements, airborne sensors, and satellite 
data are  planned for further  development of the retrieval algorithms, and for validation of 
the derived  products  after launch. The ADEOS-I1  and EOS AMSR validation activities 
will be  conducted in conjunction with ongoing agency investigations in 
hydrometeorology and climate, and will include  field experiments and  data acquisitions 
planned by international programs such as the GEWEX  Coordinated  Enhanced Observing 
Period (CEOP) experiments. 

2. MODELING 

The research framework for soil moisture sensing using passive microwaves has been 
well established [I], [2], and includes  an extensive history of field experiments and 
modeling studies. Most of these investigations have  been performed at  1.4 GHz (L-band), 
with fewer studies done at the  higher  AMSR frequencies (C- and X-band). Algorithms for 
retrieving soil moisture from AMSR data  require  microwave models valid at the 
frequencies, viewing angle, and spatial resolution of the AMSR measurements. The 
models need to  be relatively simple for satellite application yet physically meaningful. 
Some model  parameters need to  be  estimated using ancillary data or other a-priori 
information. 

The emission model most appropriate for AMSR soil moisture retrieval represents the 
land  surface as a homogeneous, single-scattering vegetation layer above the soil.  This 
model has  been discussed by many authors [3], [4]. The soil is characterized  by a surface 
reflectivity (rP) and effective  temperature (T,). The reflectivity is related to the soil 
moisture (rn,,) by the Fresnel expressions, modified for surface roughness. The vegetation 
acts as an attenuating and emitting layer, and is characterized  by the opacity (TJ, 

temperature ( T J ,  and single-scattering albedo (w) .  The observed brightness temperature 
(Tb ) is then given by 

P 
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where p refers to either  vertical  or  horizontal polarization. The vegetation opacity is 
related to the  vegetation  water  content,  and  less  directly to the  leaf area index. The single- 
scattering albedo is small, and is usually  neglected,  but  can  be  estimated if  necessary as a 
calibration parameter. The effects of atmospheric  absorption  and  emission  are  not  usually 
significant at frequencies of X-band  and  below. 

Equation (1) represents  the  dominant  physical  mechanisms  for  surface emission and 
scattering but  keeps to a minimum the number of free parameters  that must be  known  or 
estimated. The  following factors  must  be  considered  in applying the model since they 
affect the  retrieval  accuracy.  First,  the single scattering albedo  and  vegetation opacity can 
exhibit polarization dependence  related to the orientations of leaves, stalks, and  branches 
within the vegetation  volume. Second, the effect of surface roughness on soil reflectivity 
is difficult to parameterize since few studies have  been  made of surface roughness at the 
AMSR footprint scale. Finally, since land  surfaces  are  heterogeneous,  the  modeled and 
retrieved  parameters  must  be  interpreted as averages  over the horizontal footprint and  the 
vertical sensing  depth [ 5 ] .  At  -7-10  GHz the AMSR footprint is -60 km, and the soil 
moisture  sensing  depth is on the order of less than a centimeter. 

The  most  important relationship for soil moisture  sensing is that between the soil 
dielectric constant (hence emissivity  and reflectivity) and  the  soil  volumetric moisture  [6j, 
[7]. This relationship is  influenced by soil  texture  (represented by the fractional contents 
of sand, silt, and clay), and  surface roughness. Ancillary  data  on soil texture and 
topography are  thus  useful  in  improving  the  accuracy of the retrievals. 

The dependence  of vegetation  opacity  on  columnar  water content (w,) and  leaf area 
index (LAO has been  studied  both  theoretically  and experimentally. Two  expressions 
developed  independently to represent  these  relationships  are [8], [9j 

where the cos0 factor accounts for the slant observation path  through the vegetation. 
In the first expression, b is a parameter that depends  on  vegetation  type  and is 

approximately proportional to  frequency.  As  frequency  increases, the frequency 
dependence  of b decreases,  and its dependence  on  canopy  structure  increases [ 101, [ 1 11. 
Thus, ancillary data on  vegetation  type  or classification are useful to calibrate b for global 
applications. In the  second expression, a logarithmic function is used  to express the 
dependence  of vegetation  opacity  on  water content, and a linear  dependence is used to 
relate the opacity  to  leaf  area  index. The coefficients k and y depend on  vegetation 
characteristics  and  must  be  determined  experimentally.  Again,  ancillary data are  useful. 

Variability in  land  surface  temperature  causes  uncertainty  in retrieving soil moisture. 
One  method  to  compensate for this is to  use ancillary information  from meteorological 
surface  air  temperature data, or forecast  model  skin-surface  temperatures.  Another option 
is to use multichannel brightness  temperature indices in  the retrieval algorithm which  are, 
to first order,  independent  of  surface  temperature.  Indices of interest include a spectral 
gradient  index (Isw), and a polarization  index (PI), which  can be defined as 



Retrieval of soil moisture from  AMSR data 

( Tbv - Tbh) 

' (Tbv + Tbh) 2 

PI = 

where Is, is defined  for a specific  polarization,  and  for  frequency i greater  than j ,  and PI is 
defined  for a specific  frequency.  The  different sensitivities of these indices to soil 
moisture and  vegetation  can  be  exploited  in  the retrievals. For instance, lower frequencies 
penetrate  deeper  through  vegetation  and soil, are less sensitive to surface roughness, and 
are more sensitive to soil moisture. Hence, Is, typically  increases  with soil moisture. 
Similarly, PI typically increases  with soil moisture since the brightness temperature  at 
horizontal polarization is more sensitive to soil moisture than at vertical polarization. PI 
also decreases  with  increasing  vegetation  and roughness, and is less sensitive to soil 
moisture at higher  frequencies [9], [12]. 

3. ANCILLARY DATA 

Ancillary  data  are  useful  for improving the  accuracy  of soil moisture retrievals, and are 
critical for some approaches.  Much of the required  data  are  readily available, but  from 
diverse  sources  and  in  varying formats and resolutions. These  data sets must be  quality- 
controlled and  registered  to  the  satellite data. Some of the required  data  are static, such as 
soil texture  and topography, while others vary  in time, such as vegetation  cover and 
surface  temperature. The data  must  be  used carefully, since in most cases the data 
parameters  do not correspond  directly  to  parameters  of  the  microwave models.  For 
instance, vegetation  index (NDVI) is  related  indirectly to vegetation  water content and  leaf 
area index,  while  in-situ  surface  air  temperature,  and  forecast  model skin temperature, are 
related  indirectly to the  microwave-observed  land  surface  temperature. Table 1 lists some 
of the  candidate  ancillary data sets  and  their  sources. 

4. RETRIEVAL  ALGORITHMS 

The AMSR C-band (6.9 GHz)  horizontally  polarized  channel will be the most sensitive 
to soil moisture. An algorithm using this channel  alone  can  be  used to retrieve soil 
moisture if ancillary  data  are  available to correct  for  surface  temperature, vegetation, 
surface  roughness,  and soil texture. An algorithm of this form has been  applied to soil 
moisture estimation  using L-band (1.4 GHz) aircraft data [ 131. 

By using normalized  indices as defined in Equations (4) and (5), the reliance  on 
ancillary  surface  temperature data can  be  avoided.  One  method is to  use  the  indices PI and 
Is,,,, at  appropriate  frequencies  to estimate the  vegetation  correction  and soil moisture. 
The two  indices  are  chosen  using  frequencies  that  provide  different sensitivities to soil 
moisture and vegetation, so that  they  can  be  used to retrieve  these  parameters 
independently. Alternatively, two PI indices  at  different  frequencies, e.g. 6.9 and 10.7 
GHz,  can  be used  to estimate the  vegetation  correction  and  soil moisture. To  implement 
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Table 1: Ancillary data sets for use  in retrieval of soil moisture from AMSR data. 

Data Set Original  Source Comments 
Resolution 

Surface  30  arc-sec USGSEDC  GTOP030 Global DEM 
Topography 

Soil Texture 0.08" x 0.08" Global GRASS1 Based on Zobler, 1986 

Land  Cover 
1 km USGS/EDC 

NDVI 1 km x 1 km AVHRR, MODIS 

Surface 2" x 2" GSFC/DAO, 
Temperature NCEP, ECMWF 

the polarization index methods, table look-up or iterative schemes can  be  used.  These 
may  be  based  on a simple forward model such as Equation (1) or on empirical data. 
Alternatively, a nonlinear  regression equation can  be developed. 

As  an alternative to using ancillary  data for the surface  temperature corrections, or 
using brightness temperature  indices  to  normalize the surface  temperature effects, higher 
frequency AMSR channels can  be used to estimate and correct for surface  temperature 
variability. At higher frequencies, and  vertical polarization, the brightness temperature is 
less sensitive to soil moisture and vegetation, and more sensitive to surface  temperature 
[14]-[16]. Thus, the 6.9, 10.7, and  18  GHz channels at both polarizations (six channels 
of information) can be  used  to estimate surface  temperature, vegetation moisture content, 
and soil moisture independently.  An iterative retrieval scheme based on the model of 
Equation (1) can be  used  to implement this approach. 

The AMSR data will require screening for land surface type prior to implementing the 
soil moisture retrieval algorithms described above. Land  cover databases and classification 
algorithms will  be  used to identify locations of dense vegetation, open water, snow cover, 
variable topography, and other adverse  surface conditions. For these purposes, it  is 
advantageous to pre-process the ancillary  data sets and brightness temperature data to the 
same grid. The data sets, classification algorithms, and soil moisture retrieval 
algorithms, can  then  be  managed similar to a conventional geographic information 
system. 

5. ALGORITHM TESTS 

The soil moisture retrieval approaches discussed above have  been tested to varying degrees 
using theoretical simulations, experimental data from ground-based  and  airborne 
campaigns, and satellite data. Descriptions of this research  can  be  found  in the literature 
[4], [9], [13]. Realistic tests using satellite data  are  hard to perform. The best satellite 
data for simulating AMSR C- and  X-band  measurements  are the Nimbus-7 SMMR data 
covering the time period  1978-1987. Unfortunately, there  are no suitable in-situ 
measurements available during this period for validating soil moisture retrievals using the 
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SMMR data. However,  an intercomparison test of the different  approaches  was carried 
out recently using a data set provided by NASDA of in-situ soil moisture measurements 
from sites in the former Soviet Union. Soil moisture data from 79 stations, sampled 
every 10 days, were  compared  with  corresponding soil moisture values retrieved  from 
SMMR data. The in-situ data were measured at point locations, averaged  over the top 10 
cm of soil. No site data on vegetation cover, topography, or  surface  temperature were 
available. The SMMR measurements  are footprint averages  over  an approximately 120- 
km horizontal scale and the top centimeter of the surface. The discrepancies  between the 
in-situ and SMMR spatial sampling, and the lack of ancillary information on surface 
characteristics,  adversely  affect the quality of the intercomparisons. Figure 1 shows one 
example of the results obtained. 

The results indicate some agreement between the satellite and in-situ observations, but 
there is significant scatter (rms of -8% volumetric soil moisture, or 0.08 g ~ m - ~ ) .  All 
the algorithms tested  performed  more  or less in this range, although tuning to specific 
sites yielded  better results. The soil moisture accuracy to be  expected from AMSR is 
approximately < 0.06 g ~ m - ~  (in areas where the vegetation cover is less than -1.5 kg m- 
2), with better  accuracy  expected for lower vegetation  cover and  where the surface 
characteristics  are  well known. In view of these sampling and data quality issues the 
comparison results of Figure 1 are consistent with expectation. A major effort will be 
required to develop suitable validation data at different global locations to evaluate the 
quality of the AMSR soil moisture estimates. 

6. FIELD  EXPERIMENTS  AND  VALIDATION 

Validation plans for the AMSR soil moisture products  are  currently  under development. 
An initial version of the EOS-PM1 AMSR soil moisture validation plan is available at 
the web site http://eospso.gsfc.nasa.gov/validation/valpage.html. The validation  plan 
proposes a combination of enhanced in-situ ground  measurements at dedicated test sites, 
ground-based  and airborne radiometer measurements, model output data, and 
intercomparisons with other spaceborne sensors. The dedicated test sites will require 
enhanced in-situ instrumentation to provide  dense sampling over the spatial extent of a 
few AMSR footprints (-200 x 200 km). These sites need to be  automated to provide 
continuous sampling at 6-hourly intervals, permitting interpretation of  diurnal  effects on 
the surface soil moisture. A primary  validation site is the U.S. Southern Great Plains 
(SGP) region centered in Oklahoma. This site was the location of previous L-band soil 
moisture field experiments, and is the location of the L- and C-band  field experiments to 
be  conducted in July 1999 (SGP’99). The SGP’99 experiment plan is available at the 
web site http://hydrolab.arsusda.pov/sgn99/. 

Validation of soil moisture over  areas  larger than the dedicated sites will be  difficult 
since the only independent estimates of soil moisture at these scales are  products derived 
from hydrometeorological models, computed from knowledge of surface  land cover, soil 
and topographic characteristics, and budgets of energy and  water at the Earth‘s surface. 
These models themselves have inherent errors that are  not  yet well understood. Studies 
using these model products will  be pursued in collaboration with data assimilation groups 
and the operational forecast  centers (e.g. NCEP, ECMWF). In addition, the in-situ data 
collection and modeling activities of international programs such as the GEWEX 
Coordinated  Enhanced Observing Period (CEOP) experiments will be  utilized to the 
extent possible. 

http://eospso.gsfc.nasa.gov/validation/valpage.html
http://hydrolab.arsusda.pov/sgn99
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Figure  1. Comparison between  soil moisture estimates from  SMMR and in-situ 
observations. In-situ data are from sites over  the former  Soviet Union. 

7. CONCLUSIONS 

In this  paper,  some  approaches  currently  under  study  for  retrieving soil moisture from 
AMSR data  have  been  described. The theory  and  experimental  background for these 
approaches is well established. However,  the  complexity of natural  terrain makes the 
retrieval of soil moisture  a difficult problem.  Continued experiments  involving enhanced 
in-situ surface observations, airborne sensors, and satellite data  are  necessary for further 
improvement of the AMSR retrieval algorithms and  for  validation of the  derived soil 
moisture products after launch. 
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